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The next example of Lagrangian mechanics was the problem of a frictionless block 
sliding down the side of a wedge of angle 𝛼 which is sliding horizontally over a frictionless 
surface.  Because the block and wedge are constrained to remain in contact, and the wedge 
and horizontal surface are also constrained to remain in contact, there are really only two 
degrees of freedom in this problem: the displacement of the wedge in the horizontal direction 
(𝑞2), and the displacement of the block down the wedge (𝑞1).  The kinetic and potential 
energies can be written in terms of these coordinates and their time derivatives.  We found 
that the horizontal component of momentum is conserved, and that the block moves down 
the wedge with a constant acceleration that depends of the mass of the block and wedge, as 
well as the angle 𝛼.  The time for the block to reach the bottom of the wedge is just that of a 
particle moving with constant acceleration. 

The rotating bead on a loop problem was then analyzed.  A bead of mass 𝑚 is 
constrained to move on a vertical circular loop of radius 𝑅, and the loop is set into rotation 
about the vertical axis through the loop center, at angular frequency 𝜔.   There is a single 
generalized coordinate 𝜃, which is the angle that the bead makes with respect to the 
vertically-down direction from the center of the loop.  There are two components of velocity 
for the bead, one around the loop (𝑣𝜃 = 𝑅𝜃̇) and the other around the vertical axis (𝑣𝜑 =

𝜌𝜌 = 𝑅 sin𝜃 𝜔).  The Lagrangian is ℒ�𝜃, 𝜃̇� = 𝑇 − 𝑈 = 𝑚𝑅2

2
�𝜃̇2 + 𝜔2 sin𝜃2� −

𝑚𝑚𝑚(1 − cos 𝜃).  The resulting equation of motion is 𝜃̈ = (𝜔2 cos 𝜃 − 𝑔/𝑅) sin𝜃.  This 
cannot be solved in closed form for 𝜃(𝑡).  Note that the equation reduces to the equation of 
motion of a pendulum in the limit 𝜔 → 0. 

Even though we cannot solve this equation for 𝜃(𝑡), we can learn much about the 
possible equilibrium solutions to the equation.  From the in-class demonstration we showed 
that there are several different equilibrium points for the bead while the loop is rotating.  The 
equilibrium points are those special angles 𝜃0 where a particle can be placed with no initial 
velocity 𝜃̇ = 0 and will stay there because the acceleration is zero, 𝜃̈ = 0.  The zeroes of the 
above equation of motion come from the two terms in the product on the RHS.  The first are 
those for which sin𝜃0 = 0, which include 𝜃0 = 0,𝜋.  The position 𝜃0 = 𝜋 is always 
unstable, while that for 𝜃0 = 0 is stable for low angular velocities 𝜔.  The other equilibrium 
points are given by the zero of the term in parentheses: cos 𝜃0 = 𝑔/𝜔2𝑅.  However, since the 
magnitude of cos 𝜃0 is bounded, this requires a certain minimum angular velocity, or greater, 
to be satisfied: 𝜔 ≥ �𝑔/𝑅.  There are two equilibrium angles in this case: 𝜃0 =

http://www.physics.umd.edu/deptinfo/facilities/lecdem/services/demos/demosd5/d5-23.htm


2 
 

± cos−1(𝑔/𝜔2𝑅), both of which are stable when they exist.  In summary, the angle 𝜃0 = 0 is 
stable for 𝜔 < �𝑔/𝑅, and it bifurcates (becomes unstable) into two other stable points at 
𝜃0 = ± cos−1 𝑔/𝜔2𝑅.  In the limit as 𝜔 → ∞, the angles become 𝜃0 = ±𝜋/2, which is the 
‘outside edge’ of the circular hoop. 

If a generalized coordinate does not appear in the Lagrangian it is said to be ignorable or 
cyclic.  The corresponding generalized momentum is conserved.  This leads to 
simplifications in the description of the motion. 

The basic process of Lagrangian mechanics is as follows: 

1) Identify all of the constraints on the system. 
2) Identify the degrees of freedom of the constrained system.  Choose a set of 

generalized coordinates that incorporate all of the constraints and provide a minimal 
description (smallest 𝑛) of the most general motion of the constrained system. 

3) Express the kinetic and potential energy of the system in terms of only the 
generalized coordinates, their time derivatives, and possibly also time.  One can often 
use a Cartesian, cylindrical or spherical framework in which to write down the 
components of velocity.  This helps when calculating the kinetic energy as 𝑇 =

�𝑚
2
� 𝑣⃗ ∙ 𝑣⃗.  Write out the full Lagrangain ℒ = 𝑇 − 𝑈. 

4) Write out and solve the Euler-Lagrange equations for each generalized coordinate. 

We derived a new quantity known as the Hamiltonian.  The Lagrangian was engineered 
specifically to reproduce Newton’s second law in component form, however it does not have 
a simple physical interpretation.  By taking the total time derivative of the Lagrangian (𝑑ℒ

𝑑𝑑
) 

we could create a new quantity ℋ that is time-invariant, subject to the condition that  𝜕ℒ
𝜕𝜕

= 0 
(i.e. that the Lagrangian has no explicit time dependence), and it is found to be ℋ =
∑ 𝑝𝑖𝑛
𝑖=1 𝑞̇𝑖 − ℒ, where 𝑝𝑖 = 𝜕ℒ/𝜕𝑞̇𝑖.  If, in addition, there is a time-independent relationship 

between the Cartesian coordinates and the generalized coordinates, 
𝑟𝛼 = 𝑟𝛼(𝑞1, 𝑞2, … 𝑞𝑖, … 𝑞𝑛), then the Hamiltonian has a simple interpretation as the total 
mechanical energy 𝑇 + 𝑈. 


